Multimetallic Binding to Fullerenes:

$\mathrm{C}_{60}\left(\mathrm{Ir}_{2} \mathrm{Cl}_{\mathbf{2}}(\mathbf{1 , 5 - C O D})_{\mathbf{2}}\right\}_{2}$. A Novel Coordination Mode to Fullerenes

Merja Rasinkangas, Tuula T. Pakkanen, Tapani A. Pakkanen,' Markku Ahlgrén, and Juha Rouvinen
\section*{Department of Chemistry, University of Joensuu

P.O. Box 111, SF-80101 Joensuu, Finland}

Received March 8, 1993
Chemistry of metal fullerene complexes has emerged as a new area in organometallic chemistry. Since the report of the first such complex $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{60}\right) \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O},{ }^{1}$ several other complexes have been synthesized and characterized. ${ }^{2}$ A common feature in all of these complexes is the similar binding mode of the metal to the external surface of the fullerene cage. The metal binds in an η^{2} fashion to the carbon-carbon bond between two six-membered rings. The metals are typically Pt and Ir , ligated with phosphine, chloride, and carbonyl groups. Some of these complexes are multiple addition products where the metal centers are on the opposite sides of the C_{60} frame.

Here we report the synthesis and crystallographic characterization of the first multimetallic addition product of C_{60}, where two metals connected to each other coordinate to the same sixmembered ring of C_{60}.

The new fullerene complex was obtained by mixing solutions of C_{60} and $\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}$ in benzene (or toluene) in a $1: 1$ mole ratio at room temperature. A brown precipitate formed and was separated by decantation. The air-stable product was found to be only slightly soluble in benzene (or toluene) on heating and was characterized with IR spectroscopy and chemical analysis. ${ }^{3}$ Crystals of good quality were grown by slow diffusion of C_{60} and $\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}$ benzene solutions together. The black rectangular plates crystallized in several weeks.

The structure of $\mathrm{C}_{60}\left\{\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}\right\}_{2}$ is shown in Figure 1. ${ }^{4}$ Two $\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}$ groups bind to the opposite ends of the C_{60} frame, giving a $C_{2 h}$ point group symmetry for the molecule. Two trapped benzene solvent molecules are also found in the structure with no short contacts to the complex. The detailed geometry of the $\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}$ binding site to C_{60} is shown in Figure 2. The complexation of the $\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}$ takes place without any leaving groups. In complexation the iridium moiety opens up for binding with distortion of its original geometry. The two iridiums bind to two adjacent $6: 6$ ring fusions. The coordination sphere of iridium remains otherwise unaltered, except that the two chloride bridges and the two 1,5-COD η^{2}-bound

[^0]

Figure 1. Perspective view of $\mathrm{C}_{60}\left\{\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}\right\}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, with 50% thermal contours. The solvent molecules have been omitted for clarity.

Figure 2. Detailed view of the coordination arrangement of the $\mathrm{Ir}_{2} \mathrm{Cl}_{2}$ moiety. Important interatomic distances (angstroms) and angles (deg): Ir1-C1, 2.231(6); Ir1-C2, 2.211(6); Ir2-C3, 2.201(7); Ir2-C4, 2.225(7); Ir1-Cl1, 2.398(3); Ir1-C12, 2.552(2); Ir1-C31, 2.140(7); Irl-C32, $2.145(7) ; \mathrm{C} 1-\mathrm{C} 2,1.491(10) ; \mathrm{C} 2-\mathrm{C} 3,1.502(9) ; \mathrm{C} 3-\mathrm{C} 4,1.454(12) ; \mathrm{C} 1-$ C6, 1.496(11); C5-C6, 1.384(10); C1-Irl-C2 39.2(2); Cl1-Irl-Cl2, 79.6(1).
ligands are bent away from C_{60}. The coordination geometry of C_{60} is similar to that of the monometallic complexes. The distance between the two iridium atoms is 346.5 pm , which is close to the typical range of metal distances in polymetallic complexes.

The complexation reaction between C_{60} and $\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}$ can be rationalized as an addition reaction of an unsaturated iridium complex. The binding of the $\mathrm{Ir}_{2} \mathrm{Cl}_{2}$ unit to the two carboncarbon bonds in the same six-membered ring shows that neighboring 6:6 ring junctions can also be activated in metal complexation. This result suggests that fullerene complexes with extended polynuclear metal systems bound to the surface of C_{60} can be synthesized.

Acknowledgment. Financial support from the Academy of Finland is gratefully acknowledged.

Supplementary Material Available: Tables of atomic coordinates, bond distances, bond angles, anisotropic thermal parameters, and hydrogen positions and drawings showing the atomic numbering scheme (8 pages); listing of observed and calculated structure factors (29 pages). Ordering information is given on any masthead page.

[^0]: (1) Fagan, P. J.; Calabrese, J. C.; Malone, B. Science 1991, 252, 1160.
 (2) (a) Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Science 1991, 252, 312. (b) Fagan, P. J.; Calabrese, J. C.; Malone, B. J. Am. Chem. Soc. 1991, 113, 9408. (c) Fagan, P. J.; Calabrese, J. C.; Malone, B. J. Acc. Chem. Res. 1992, 25, 134. (d) Balch, A. L.; Catalano, V. J.; Lee, J. W. Inorg. Chem. 1991, 30, 3980. (e) Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M. J. Am. Chem. Soc. 1992, 114, 5455. (f) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. J. Am. Chem. Soc. 1992, 114, 10984. (g) Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M.; Parkin, S. R. J. Am. Chem. Soc. 1991, 113 , 8953. (h) Balch, A. L.; Lee, J. W.; Olmstead, M. M. Angew. Chem., Int. Ed. EngI. 1992, 31, 1356. (i) Koefod, R. S.; Hudgens, M. F.; Shapley, J. R. J. Am. Chem. Soc. 1991, 113, 8957.
 (3) $\mathrm{C}_{610}\left\{\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}\right\}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ elemental analysis: C (calcd) 56.3 , (found) 55.6; H (calcd) 2.7, (found) 2.6. IR absorptions in $\mathrm{KBr}: 2944$ (s), 2918 (sh), 2910 (s), 2880 (s), 2831 (s), 1478 (m), $1460(\mathrm{~m}), 1428$ (m), 1387 (m), 1328 (s), 1300 (w), 1259 (w), 1245 (w), 1190 (m), 1177 (m), 1161 (m), $1088(\mathrm{w}), 1028(\mathrm{~m}), 1008(\mathrm{~m}), 838(\mathrm{~m}), 787(\mathrm{~m}), 733(\mathrm{~m}), 701(\mathrm{~m}), 679(\mathrm{~s})$, $585(\mathrm{w}), 527(\mathrm{~s}), 518(\mathrm{w}), 509(\mathrm{w}), 480(\mathrm{~m}) \mathrm{cm}^{-1}$
 (4) Black rectangular plates of $\mathrm{C}_{60}\left\{\mathrm{Ir}_{2} \mathrm{Cl}_{2}(1,5-\mathrm{COD})_{2}\right\}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ form in the triclinic space group $P \overline{1}$ with $a=10.249(3), b=11.516(3)$, and $c=15.996(4)$ $\AA ; \alpha=69.09(2)^{\circ}, \beta=78.16(2)^{\circ}, \gamma=80.53(2)^{\circ}$; and $V=1717.6(9) \AA^{3}$ at 298 K with $Z=1, d$ (calcd) $=2.147 \mathrm{~g} / \mathrm{cm}^{3}$. Refinement of 5521 reflections yielded $R=0.0323, R_{\mathrm{W}}=0.0324$.

